

Algorithms: Dynamic Programming (Optimal Binary Search Trees) and Graphs

Ola Svensson

EPFL School of Computer and Communication Sciences

Lecture 13, 2.04.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

Dynamic Programming (DP)

Main idea:

- ▶ Remember calculations already made
- ▶ Saves enormous amounts of computation

Allows to solve many optimization problems

- ▶ Always at least one question in google code jam needs DP

Key elements in designing a DP-algorithm

Optimal substructure

- ▶ Show that a solution to a problem consists of **making a choice**, which leaves one or several subproblems to solve and the optimal solution solves the subproblems optimally

Overlapping subproblems

- ▶ A naive recursive algorithm may revisit the same (sub)problem over and over.
- ▶ **Top-down with memoization**
Solve recursively but store each result in a table
- ▶ **Bottom-up**
Sort the subproblems and solve the smaller ones first; that way, when solving a subproblem, have already solved the smaller subproblems we need

ROD CUTTING

Rod cutting

Definition

INPUT: A length n and table of prices p_i , for $i = 1, \dots, n$

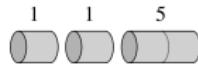
OUTPUT: The maximum revenue obtainable for rods whose lengths sum up to n , computed as the sum of the prices for the individual rods.

(a)

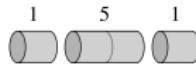
(b)

(c)

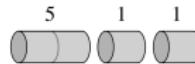
(d)



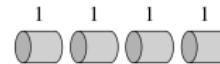
(e)



(f)



(g)



(h)

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the remaining piece in an optimal way

Hence, if we let $r(n)$ be the optimal revenue from a rod of length n , we can express $r(n)$ recursively as follows

$$r(n) = \begin{cases} 0 & \text{if } n = 0 \\ \max_{1 \leq i \leq n} \{p_i + r(n - i)\} & \text{otherwise if } n \geq 1 \end{cases}$$

Optimal substructure: Solve recurrence using top-down with memoization or bottom-up which yields an algorithm that runs in time $\Theta(n^2)$.

Parenthesization	Cost computation	Cost
$A \times ((B \times C) \times D)$	$20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100$	120,200
$(A \times (B \times C)) \times D$	$20 \cdot 1 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100$	60,200
$(A \times B) \times (C \times D)$	$50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100$	7,000

MATRIX-CHAIN MULTIPLICATION

Matrix-chain multiplication

Definition

INPUT: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$

OUTPUT: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications

Example: Optimal parenthesization of $A_{4,3} \times B_{3,5} \times C_{5,2}$ is

$$(A_{4,3} \times (B_{3,5} \times C_{5,2}))$$

and requires $3 \cdot 5 \cdot 2 + 4 \cdot 3 \cdot 2$ multiplications.

Dynamic programming algorithm

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Optimal substructure: to obtain an optimal solution, we need to parenthesize the two remaining expressions in an optimal way

Hence, if we let $m[i, j]$ be the optimal value for chain multiplication of matrices A_i, \dots, A_j , we can express $m[i, j]$ recursively as follows

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \leq k < j} \{ m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j \} & \text{otherwise if } i < j \end{cases}$$

Overlapping subproblems: Solve recurrence using top-down with memoization or bottom-up which yields an algorithm that runs in time $\Theta(n^3)$.

LONGEST COMMON SUBSEQUENCE

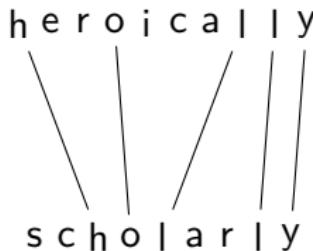
Longest common subsequence

Definition

INPUT: 2 sequences, $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_n \rangle$.

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn't have to be consecutive, but it has to be in order

Example:

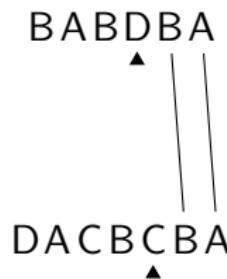


Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step to the left in one of the words



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step to the left in one of the words

Dynamic programming algorithm

Let $X_i = \langle x_1, x_2, \dots, x_i \rangle$ and $Y_j = \langle y_1, y_2, \dots, y_j \rangle$

Choice:

If $x_i = y_j$ then either

- ▶ OPT “matches” x_i with y_j and remaining OPT is in (X_{i-1}, Y_{j-1}) ;
- ▶ OPT is in (X_{i-1}, Y_j) ; or
- ▶ OPT is in (X_i, Y_{j-1})

If $x_i \neq y_j$ then either

- ▶ OPT is in (X_{i-1}, Y_j) ; or
- ▶ OPT is in (X_i, Y_{j-1})

We proved that we can assume that OPT “matches” x_i with y_j if they are equal so we can simplify the first case

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want $c[m, n]$

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i - 1, j - 1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ \max(c[i - 1, j], c[i, j - 1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

- ▶ Naive implementation solves same problems many many times
- ▶ Solve with Bottom-Up or Top-Down with Memoization in time $O(m \cdot n)$.

Pseudocode and analysis

```
LCS-LENGTH( $X, Y, m, n$ )
let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
for  $i = 1$  to  $m$ 
     $c[i, 0] = 0$ 
for  $j = 0$  to  $n$ 
     $c[0, j] = 0$ 
for  $i = 1$  to  $m$ 
    for  $j = 1$  to  $n$ 
        if  $x_i == y_j$ 
             $c[i, j] = c[i - 1, j - 1] + 1$ 
             $b[i, j] = “↖”$ 
        else if  $c[i - 1, j] \geq c[i, j - 1]$ 
             $c[i, j] = c[i - 1, j]$ 
             $b[i, j] = “↑”$ 
        else  $c[i, j] = c[i, j - 1]$ 
             $b[i, j] = “←”$ 
return  $c$  and  $b$ 
```

- ▶ Time dominated by instructions inside the two nested loops which execute $m \cdot n$ times
- ▶ Total time is $\Theta(m \cdot n)$.

OPTIMAL BINARY SEARCH TREES

Searching on Facebook

More popular than

Optimal binary search trees

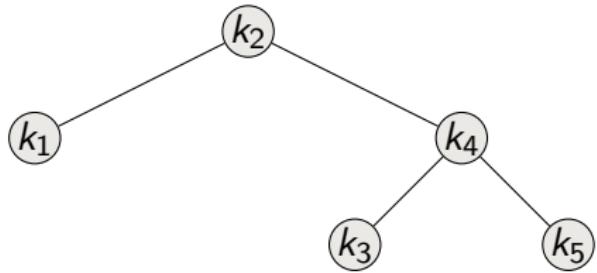
- Given sequence $K = \langle k_1, k_2, \dots, k_n \rangle$ of n distinct keys, sorted ($k_1 < k_2 < \dots < k_n$).
- Want to build a binary search tree from the keys
- For k_i , have probability p_i that a search is for k_i
- Want BST with minimum expected search cost
- Actual cost = # of items examined

For key k_i , cost = $\text{depth}_T(k_i) + 1$, where $\text{depth}_T(k_i)$ denotes the depth of k_i in BST T

$$\begin{aligned}\mathbb{E}[\text{search cost in } T] &= \sum_{i=1}^n (\text{depth}_T(k_i) + 1)p_i \\ &= 1 + \sum_{i=1}^n \text{depth}_T(k_i) \cdot p_i\end{aligned}$$

Example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3

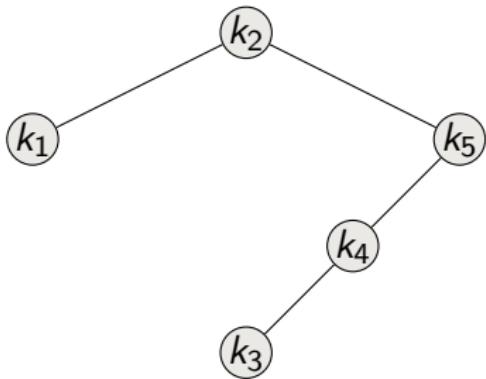


i	$\text{depth}_T(k_i)$	$\text{depth}_T(k_i) \cdot p_i$
1	1	.25
2	0	0
3	2	.1
4	1	.2
5	2	.6
		1.15

Therefore, $\mathbb{E}[\text{search cost}] = 2.15$

Example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3



i	$\text{depth}_T(k_i)$	$\text{depth}_T(k_i) \cdot p_i$
1	1	.25
2	0	0
3	3	.15
4	2	.4
5	1	.3
		1.10

Therefore, $\mathbb{E}[\text{search cost}] = 2.10$, which turns out to be optimal

Observations

- ▶ Optimal BST might not have smallest height
- ▶ Optimal BST might not have highest-probability key at root

Build by exhaustive checking?

- ▶ Construct each n -node BST
- ▶ For each put in keys
- ▶ Then compute expected search cost
- ▶ But there are exponentially many trees

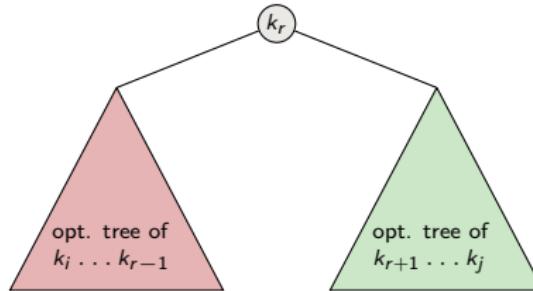
DP comes to the rescue :)

Optimal substructure

A binary search tree can be built by first picking the root and then building the subtrees recursively

After picking root solution to subtrees must be optimal

Build tree of nodes $k_i < k_{i+1} < \dots < k_{j-1} < k_j$ by selecting best root r :



$$\mathbb{E}[\text{search cost}] = p_r$$

$$+ p_i + \dots + p_{r-1} + \mathbb{E}[\text{search cost left subtree}]$$

$$+ p_{r+1} + \dots + p_j + \mathbb{E}[\text{search cost right subtree}]$$

Recursive formulation

- Let $e[i, j] =$ expected search cost of optimal BST of $k_i \dots k_j$

$$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell\} & \text{if } i \leq j \end{cases}$$

- Solve using bottom-up or top-down with memoization

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25	.65	.8	1.25	2.1
2		0	.2	.3	.75	1.35
3			0	.05	.3	.85
4				0	.2	.7
5					0	.3
6						0

Optimal BST has expected search cost 2.1
Can save decisions to reconstruct tree

Runtime Analysis

OPTIMAL-BST(p, q, n)

```
let  $e[1..n + 1, 0..n]$ ,  $w[1..n + 1, 0..n]$ , and  $root[1..n, 1..n]$  be new tables
for  $i = 1$  to  $n + 1$ 
     $e[i, i - 1] = 0$ 
     $w[i, i - 1] = 0$ 
for  $l = 1$  to  $n$ 
    for  $i = 1$  to  $n - l + 1$ 
         $j = i + l - 1$ 
         $e[i, j] = \infty$ 
         $w[i, j] = w[i, j - 1] + p_j$ 
        for  $r = i$  to  $j$ 
             $t = e[i, r - 1] + e[r + 1, j] + w[i, j]$ 
            if  $t < e[i, j]$ 
                 $e[i, j] = t$ 
                 $root[i, j] = r$ 
return  $e$  and  $root$ 
```

- ▶ Runtime dominated by three nested loops: total time is $\Theta(n^3)$
- ▶ Alternatively, $\Theta(n^2)$ cells to fill in
 - Most cells take $\Theta(n)$ time to fill in

Runtime Analysis

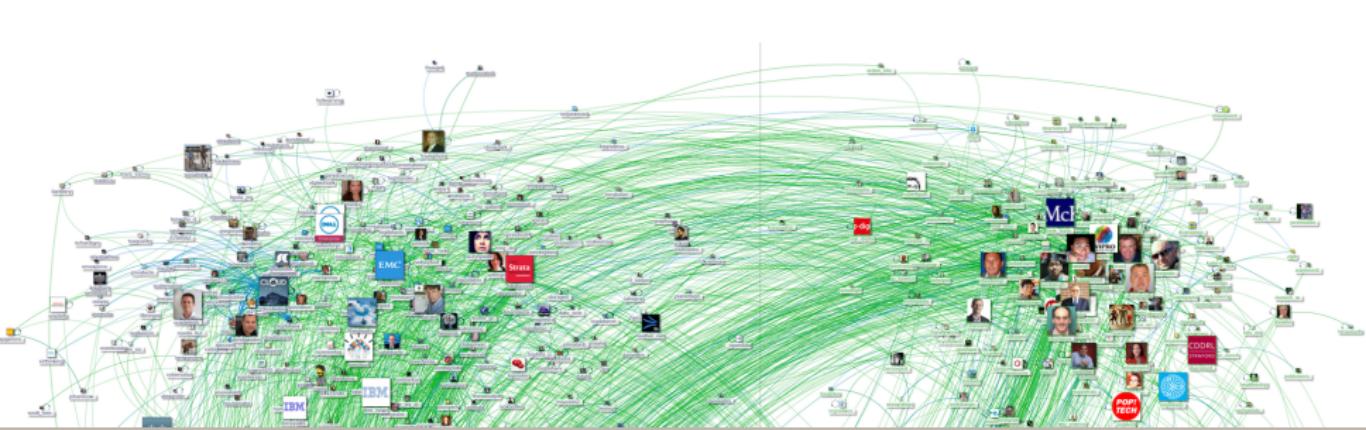
OPTIMAL-BST(p, q, n)

```
let  $e[1..n + 1, 0..n]$ ,  $w[1..n + 1, 0..n]$ , and  $root[1..n, 1..n]$  be new tables
for  $i = 1$  to  $n + 1$ 
     $e[i, i - 1] = 0$ 
     $w[i, i - 1] = 0$ 
for  $l = 1$  to  $n$ 
    for  $i = 1$  to  $n - l + 1$ 
         $j = i + l - 1$ 
         $e[i, j] = \infty$ 
         $w[i, j] = w[i, j - 1] + p_j$ 
        for  $r = i$  to  $j$ 
             $t = e[i, r - 1] + e[r + 1, j] + w[i, j]$ 
            if  $t < e[i, j]$ 
                 $e[i, j] = t$ 
                 $root[i, j] = r$ 
return  $e$  and  $root$ 
```

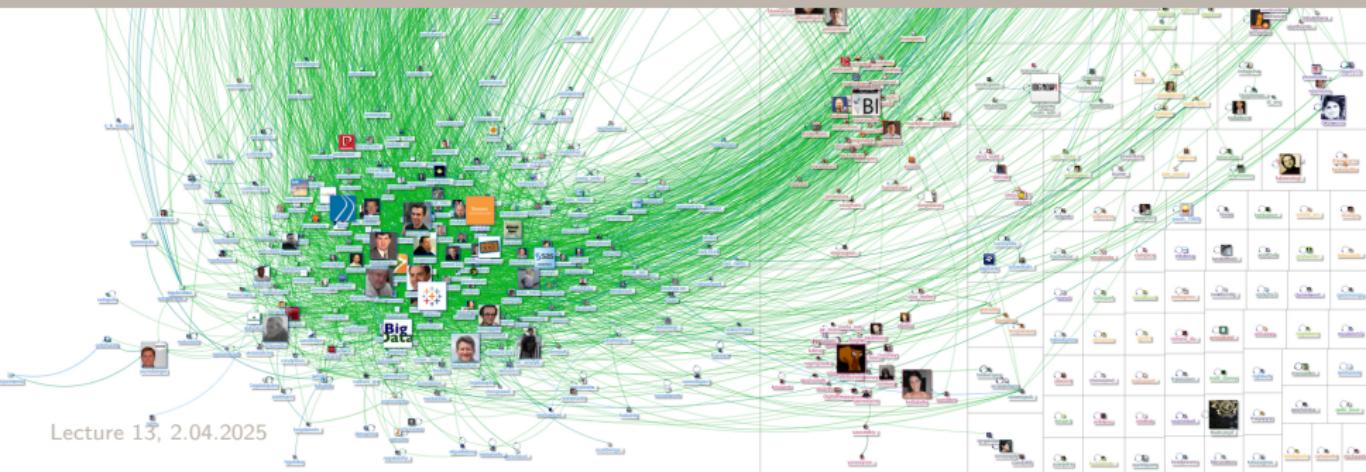
- ▶ Runtime dominated by three nested loops: total time is $\Theta(n^3)$
- ▶ Alternatively, $\Theta(n^2)$ cells to fill in
 - Most cells take $\Theta(n)$ time to fill in
 - Hence, total time is $\Theta(n^3)$

Summary of Dynamic Programming

- ▶ Identify choices and optimal substructure
- ▶ Write optimal solution recursively as a function of smaller subproblems
- ▶ Use top-down with memoization or bottom-up to solve the recursion efficiently (without repeatedly solving the same subproblems)
- ▶ Do a lot of exercises!



GRAPHS

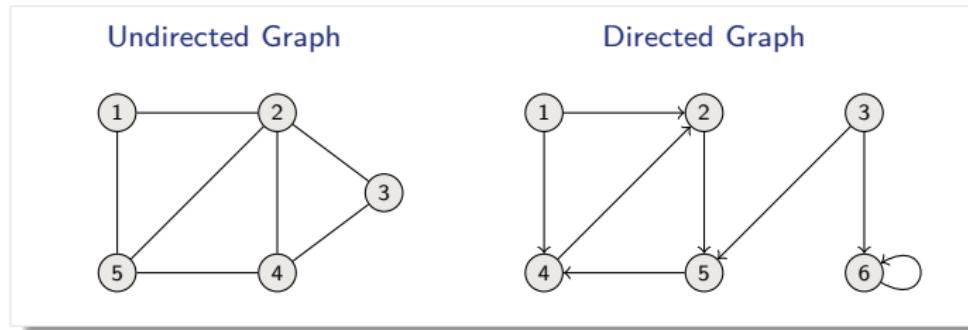


Graphs

A graph $G = (V, E)$ consists of

- ▶ a vertex set V
- ▶ an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

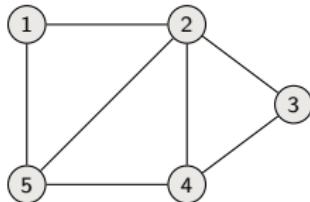


How to represent a graph in the computer?

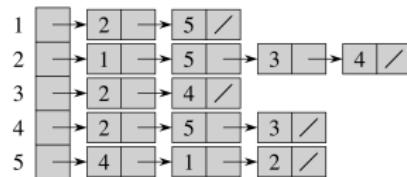
Adjacency Lists

- ▶ Array Adj of $|V|$ lists, one per vertex
- ▶ Vertex u 's list has all vertices v such that $(u, v) \in E$ (works for both undirected and directed graphs)

Undirected Graph

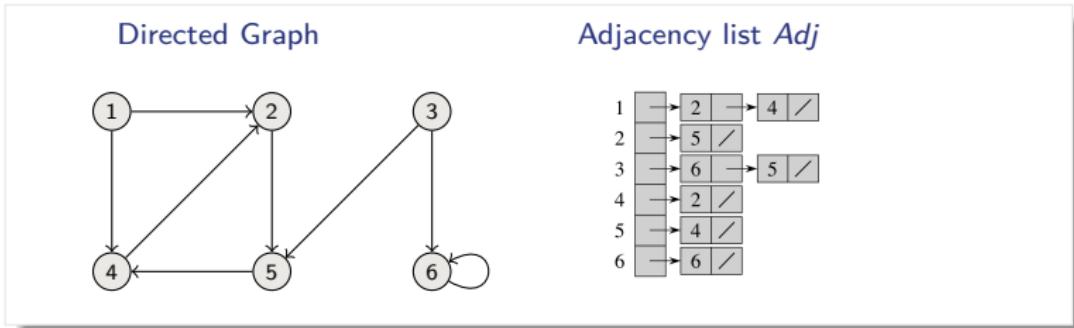


Adjacency list Adj



Adjacency Lists

- ▶ Array Adj of $|V|$ lists, one per vertex
- ▶ Vertex u 's list has all vertices v such that $(u, v) \in E$ (works for both undirected and directed graphs)
- ▶ In pseudocode, we will denote the array as attribute $G.Adj$, so we will see notation such as $G.Adj[u]$.



Adjacency matrix

- A $|V| \times |V|$ matrix $A = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Undirected Graph



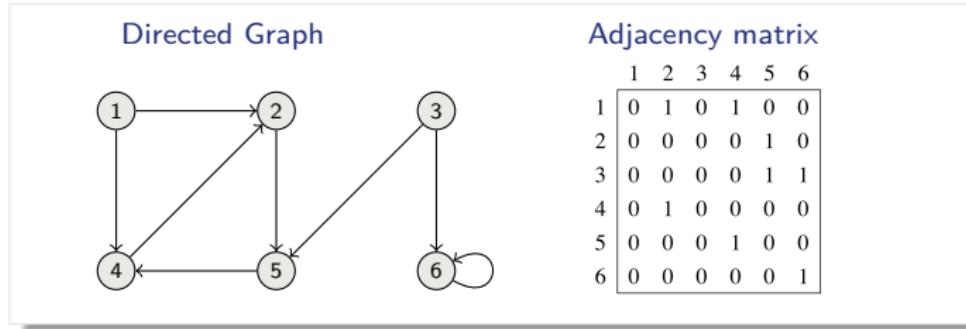
Adjacency matrix

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjacency matrix

- A $|V| \times |V|$ matrix $A = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$



Comparison of adjacency list and adjacency matrix

Adjacency list

Space = $\Theta(V + E)$

Time: to list all vertices adjacent to u : $\Theta(\text{degree}(u))$

Time: to determine whether $(u, v) \in E$: $O(\text{degree}(u))$

Adjacency matrix

Space = $\Theta(V^2)$

Time: to list all vertices adjacent to u : $\Theta(V)$

Time: to determine whether $(u, v) \in E$: $\Theta(1)$

We can extend both representations to include other attributes such as edge weights

TRAVERSING/SEARCHING A GRAPH

Breadth-First Search

Definition

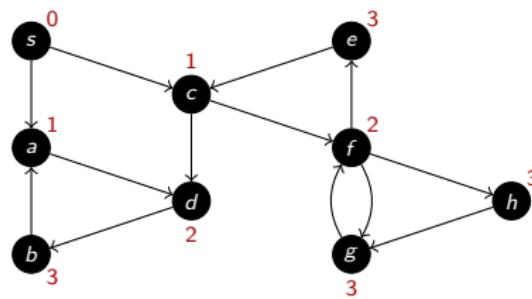
INPUT: Graph $G = (V, E)$, either directed or undirected and source vertex $s \in V$

OUTPUT: $v.d =$ distance (smallest number of edges) from s to v , for all $v \in V$

Idea:

- ▶ Send a wave out from s
- ▶ First hits all vertices 1 edge from s
- ▶ From there, hits all vertices 2 edges from s ...

Example of Breadth-first search

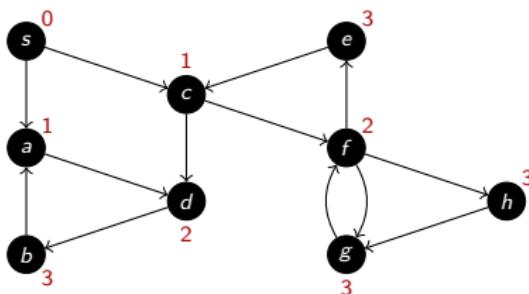


Queue $Q = \text{nil}$

Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```



Queue $Q = \text{nil}$

Analysis

Informal Idea of correctness (formal proof in book):

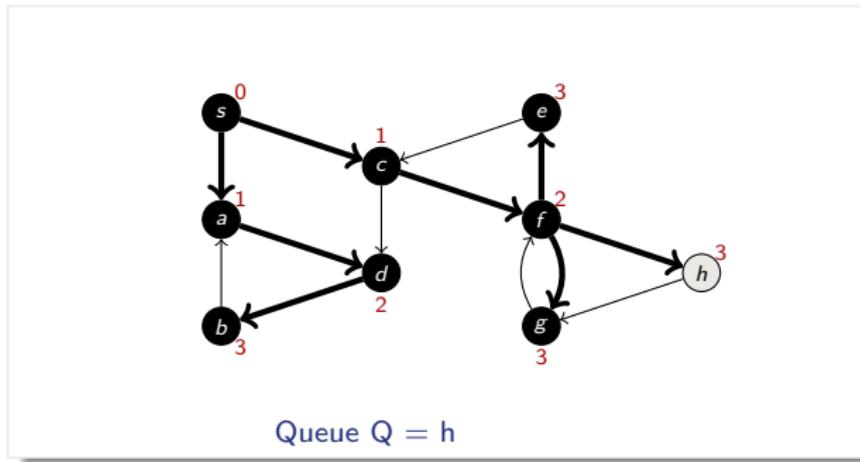
- ▶ Suppose that $v.d$ is greater than the shortest distance from s to v
- ▶ but since algorithm repeatedly considers the vertices closest to the root (by adding them to the queue) this cannot happen

Runtime analysis: $O(V+E)$

- ▶ $O(V)$ because each vertex enqueued at most once
- ▶ $O(E)$ because every vertex dequeued at most once and we examine (u, v) only when u is dequeued. Therefore, every edge examined at most once if directed and at most twice if undirected

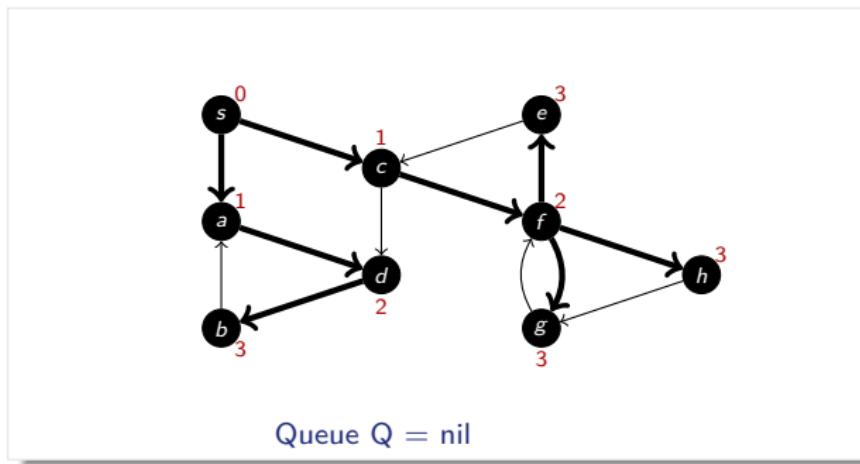
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



Depth-First Search

Definition

INPUT: Graph $G = (V, E)$, either directed or undirected

OUTPUT: 2 timestamps on each vertex: $v.d = \text{discovery time}$ and $v.f = \text{finishing time}$

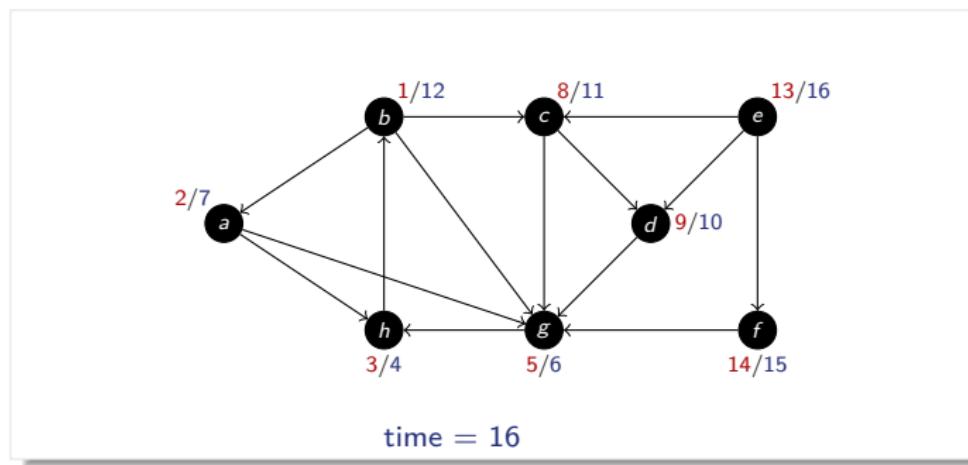
Idea:

- ▶ Methodically explore *every* edge
- ▶ Start over from different vertices as necessary
- ▶ As soon as we discover a vertex explore from it,
 - ▶ Unlike BFS, which explores vertices that are close to a source first

Example of DFS

As DFS progresses, every vertex has a color:

- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Pseudocode of DFS

```
DFS( $G$ )
  for each  $u \in G.V$ 
     $u.color = \text{WHITE}$ 
     $time = 0$ 
    for each  $u \in G.V$ 
      if  $u.color == \text{WHITE}$ 
        DFS-VISIT( $G, u$ )
```

```
DFS-VISIT( $G, u$ )
   $time = time + 1$ 
   $u.d = time$ 
   $u.color = \text{GRAY}$ 
  for each  $v \in G.Adj[u]$            // discover  $u$ 
    if  $v.color == \text{WHITE}$ 
      DFS-VISIT( $v$ )
     $v.color = \text{BLACK}$ 
   $time = time + 1$ 
   $u.f = time$                       // finish  $u$ 
```

Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

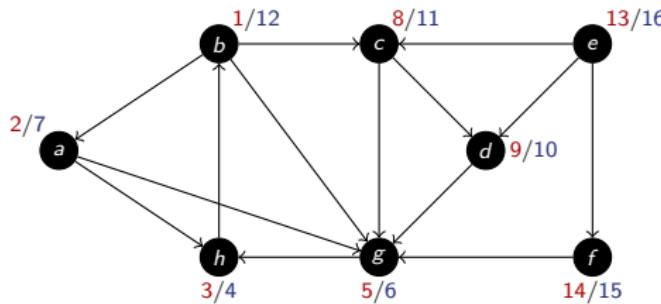
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



time = 16

Analysis

DFS forms a **depth-first forest** comprised of ≥ 1 **depth-first trees**. Each tree is made of edges (u, v) such that u is gray and v is white when (u, v) is explored.

Runtime analysis: $\Theta(V + E)$

- ▶ $\Theta(V)$ because each vertex is discovered once
- ▶ $\Theta(E)$ because each edge is examined once if directed graph and twice if undirected graph.

Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u , but not a tree edge

Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or cross-edges. Why?

