Algorithms: Dynamic Programming

(Optimal Binary Search Trees) and Graphs

Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 13, 2.04.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2% 4+ 3 — /167
What is 25 +3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 25 + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167

Lecture 13, 2.04.2025

Dynamic Programming (DP)

Main idea:
» Remember calculations already made

> Saves enormous amounts of computation

Allows to solve many optimization problems
> Always at least one question in google code jam needs DP

Lecture 13, 2.04.2025

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Overlapping subproblems

> A naive recursive algorithm may revisit the same (sub)problem over
and over.

» Top-down with memoization
Solve recursively but store each result in a table

» Bottom-up
Sort the subproblems and solve the smaller ones first; that way, when solving a

subproblem, have already solved the smaller subproblems we need

ROD CUTTING

Lecture 13, 2.04.2025

Definition
INPUT: A length n and table of prices p;, for i =1,...,n

OUTPUT: The maximum revenue obtainable for rods whose lengths
sum up to n, computed as the sum of the prices for the
individual rods.

9 1 8 5 5 8 1
U BBBD oD e oo

(@) (b) (c) (d

1 5 1 5 1 1 1 1 1 1
OO Moo oooo

(e) (® (@ (h)

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way

Hence, if we let r(n) be the optimal revenue from a rod of length n, we
can express r(n) recursively as follows

r(n):{o ifn=0

maxi<i<p {pi + r(n—1i)} otherwise if n>1

Optimal substructure: Solve recurrence using top-down with memoization
or bottom-up which yields an algorithm that runs in time ©(n?).

Lecture 13, 2.04.2025

Parenthesization | Cost computation | Cost

Ax((BxC)xD)[20-1-10+20-10-100 + 50 - 20 - 100 | 120, 200
(Ax(BxC)xD|20-1-104+50-20-10+50-10-100 | 60,200
(AxB)x (CxD)| 50-20-1+1-10-100+50-1-100 | 7,000

MATRIX-CHAIN MULTIPLICATION

Lecture 13, 2.04.2025

Matrix-chain multiplication

Definition
INPUT: A chain (A;, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;

OUTPUT: A full parenthesization of the product A;A>--- A, in a
way that minimizes the number of scalar multiplications

Example: Optimal parenthesization of A4 3 X B35 x GCs5 is
(As3 X (B3s x Gs2))

and requires 3-5-2 + 4 -3 -2 multiplications.

Lecture 13, 2.04.2025

Choice: where to make the outermost parenthesis

(Ar--- A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i, j] be the optimal value for chain multiplication of
matrices A;, ..., A;, we can express mli, j] recursively as follows

mlij] = {0 ifi=

minj<k<j {mli, k] + mlk +1,j] + pi—1pxp;} otherwise if i < j

Overlapping subproblems: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time

o(n?).

LONGEST COMMON SUBSEQUENCE

Lecture 13, 2.04.2025

Longest common subsequence

Definition
INPUT: 2 sequences, X = (x1,...,Xm) and Y = (y1,...,¥n)-

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn’t have to be consecutive, but it has to be in
order

Example:

heroically

scholar]y

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA
A

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025

Dynamic programming algorithm

Let Xj = (x1,x2,...,X;) and Yj = (y1,y2,...,¥))

Choice:
If x; = y; then either

> OPT "matches" x; with y; and remaining OPT is in (Xj_1, Yj_1);
> OPT isin (Xj_1,Y)); or
> OPT isin (X, Yi_1)
If x; # y; then either
> OPT isin (Xj_1,Y)); or
> OPT isin (X}, Yj_1)

We proved that we can assume that OPT “matches” x; with y; if they
are equal so we can simplify the first case

Lecture 13, 2.04.2025

Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
clijl=<%cli—-1,j—-1]+1 if i,j>0and x; =y;
max(c[i —1,/],cli,j—1]) ifi,j>0and x; #y;

> Naive implementation solves same problems many many times

> Solve with Bottom-Up or Top-Down with Memoization in time
O(m - n).

Lecture 13, 2.04.2025

Pseudocode and analysis

LCS-LENGTH(X, Y, m,n)
leth[1..m,1..n]and c[0..m,o0..n]be new tables
fori = 1tom

cli,0] =0
for j =0ton
cl0,j]1=0
fori = 1tom
forj = 1ton
ifx,- ==Y
cli,jl=cli-1,j=1]+1
bli. jl ="\
elseifc[i — 1, j] > cli,j —1]
cli,jl=cli—1.j]

bli.j] = 1"
else cfi. j] = cli.j 1]
bli.j] = <

return ¢ and b

> Time dominated by instructions inside the two nested loops which
execute m - n times

> Total time is ©(m - n).

Lecture 13, 2.04.2025

OPTIMAL BINARY SEARCH TREES

Lecture 13, 2.04.2025

Searching on Facebook

More popular than

Lecture 13, 2.04.2025

Optimal binary search trees

> Given sequence K = (ki, ko, ..., k) of n distinct keys, sorted
(kl <k <. < k,,).

> Want to build a binary search tree from the keys

> For k;, have probability p; that a search is for k;

» Want BST with minimum expected search cost

> Actual cost = # of items examined
For key k;, cost = depth(k;) -+ 1, where depth(k;) denotes the depth of
ki in BST T

n

E[search cost in T] = Z(depth-r(k,-) +1)p;
i=1

=1+ depthr(k)-p;
i=1

Lecture 13, 2.04.2025

i1 2 3 45 i depthy(k) depthy(K)- p;
pi| 25 2 .05 3 1 1 25

2 0 0

3 2

4 1

5 2

1.15

Therefore, E[search cost] = 2.15

Lecture 13, 2.04.2025

i |1 2 3 4 5

p,.|_25 2 05 2 3 i depthr(ki) depthr(k;)- pi
1 25

0 0

3 15

2

1

A4
3
1.10

A W N

Therefore, E[search cost] = 2.10, which
turns out to be optimal

Lecture 13, 2.04.2025

> Optimal BST might not have smallest height
» Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
> Construct each n-node BST
> For each put in keys
> Then compute expected search cost

> But there are exponentially many trees

2

DP comes to the rescue :)

Lecture 13, 2.04.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

Build tree of nodes k; < ki11 < -+ < kj_1 < kj by selecting best root r:

opt. tree of
ket .- . kj

E[search cost] = p,
+pi + - - + pr—1 + E[search cost left subtree]
+pry1 + - - - + pj + E[search cost right subtree]

Lecture 13, 2.04.2025

Recursive formulation

> Let e[i,] = expected search cost of optimal BST of k;...k;

i 0 ifi=j+1
’7 = . . - j e . .
A7\ minicrsslelior — 1+ elr + 11+ Y pe} i i <)

> Solve using bottom-up or top-down with memoization

Lecture 13, 2.04.2025

Bottom-up example

ifi=j+1

i1 2 3 4
pi | 25 2 .05 3 e[i’j]:{min,—s,sj{e[i,r—1]+e[r+1,j]+Zi:ipz} i<
e 1 2 3 4 5
1 25 65 8 125 21
2 0 2 3 75 1.35
3 0 .05 3 .85
4 0 2 7
5 0 3
6 0

Optimal BST has expected search cost 2.1
Can save decisions to reconstruct tree

Lecture 13, 2.04.2025

Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1] =0
for/ = 1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli, j] = wli,j =11+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ifr < eli.]
eli.jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)

> Alternatively, ©(n?) cells to fill in
Most cells take ©(n) time to fill in

Lecture 13, 2.04.2025

Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1] =0
for/ = 1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli, j] = wli,j =11+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ift <eli,]
eli.jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)

> Alternatively, ©(n?) cells to fill in
Most cells take ©(n) time to fill in
Hence, total time is ©(n%)

Lecture 13, 2.04.2025

Summary of Dynamic Programming

> |dentify choices and optimal substructure

> Write optimal solution recursively as a function of smaller
subproblems

> Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)

» Do a lot of exercises!

Lecture 13, 2.04.2025

A graph G = (V, E) consists of
> a vertex set V
> an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

Undirected Graph Directed Graph

How to represent a graph in the computer?

Lecture 13, 2.04.2025

Adjacency Lists

> Array Adj of |V/| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Undirected Graph Adjacency list Adj

Lecture 13, 2.04.2025

Adjacency Lists

> Array Adj of |V/| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

> In pseudocode, we will denote the array as attribute G.Adj, so we
will see notation such as G.Adj[u].

Directed Graph Adjacency list Adj

Lecture 13, 2.04.2025

Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Undirected Graph Adjacency matrix
1 2 3 45
1{o 1001
21101 1 1
3/0 1 01 0
410 1 1 0 1
5/1 1.0 1 0

Lecture 13, 2.04.2025

Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Directed Graph Adjacency matrix
123456
1{fo1 0100
20000010
30000 11
4/0 1000 0
s5[looo0o 100
6(0 00001

Lecture 13, 2.04.2025

Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = O(V + E) Space = ©(V?)

Time: to list all vertices adjacent Time: to list all vertices adjacent
to u: ©(degree(u)) to u: ©(V)

Time: to determine whether Time: to determine whether
(u,v) € E: O(degree(u)) (u,v) € E: ©(1)

We can extend both representations to include other attributes such as
edge weights

Lecture 13, 2.04.2025

TRAVERSING/SEARCHING A GRAPH

Lecture 13, 2.04.2025

Breadth-First Search

Definition

INPUT: Graph G = (V/, E), either directed or undirected and
source vertex s € V

OUTPUT: v.d = distance (smallest number of edges) from s to v,
forallveV

Idea:
> Send a wave out from s
> First hits all vertices 1 edge from s

> From there, hits all vertices 2 edges from s ...

Lecture 13, 2.04.2025

Example of Breadth-first search

Queue Q = nil

Lecture 13, 2.04.2025

BFS(V, E.s)
Pseudocode of Breadth-first search [Ratsibtead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = nil

Lecture 13, 2.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)
» O(V) because each vertex enqueued at most once

» O(E) because every vertex dequeued at most once and we examine
(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = h

Lecture 13, 2.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = nil

Lecture 13, 2.04.2025

Depth-First Search

Definition

INPUT: Graph G = (V, E), either directed or undirected

OUTPUT: 2 timestamps on each vertex: v.d = discovery time and
v.f = finishing time

Idea:
> Methodically explore every edge
> Start over from different vertices as necessary

> As soon as we discover a vertex explore from it,

> Unlike BFS, which explores vertices that are close to a source
first

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/16

2/7
9/10

3/4 5/6 14/15

time = 16

Lecture 13, 2.04.2025

Pseudocode of DFS

DFS(G)
for eachu € G.V
u.color = WHITE
time = 0
for eachu € G.V
if u.color == WHITE
DFS-VIsSIT(G, u)

Lecture 13, 2.04.2025

DFS-VISIT(G, u)
time = time + 1
u.d = time
u.color = GRAY
for each v € G.Adj[u]
if v.color == WHITE
DFS-VisIT(v)
u.color = BLACK
time = time + 1
u.f = time

// discover u
// explore (u,v)

// finish u

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/16
2/7
9/10
3/4 5/6 14/15
time = 16

Lecture 13, 2.04.2025

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis: ©(V + E)
> ©(V) because each vertex is discovered once

> O(E) because each edge is examined once if directed graph and
twice if undirected graph.

Lecture 13, 2.04.2025

Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)
Back edge: (u,v) where u is a descendant of v

Forward edge: (u,v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?

Lecture 13, 2.04.2025

